Tuesday Tip #41: Profile your pandas DataFrame 🔎


Hi Reader,

I just published a new blog post, Get started with conda environments. If you’re new to virtual environments in Python, give it a read!

Once you start using virtual environments, you’ll wonder how you ever got along without them!


đź”— Link of the week

​Yann LeCun on the future of AI (Lex Fridman interview)

Yann LeCun is one of the “godfathers of Deep Learning”, the Chief AI Scientist at Meta, and (in my opinion) one of the clearest and most convincing thinkers on the future of AI.

It’s a long interview (2 hr 45 min), and some of the sections are highly technical, so use the timestamps to jump to the parts that interest you most.

Lex is a world-class interviewer and an AI researcher, and he was the perfect person to conduct this conversation. Highly recommended!


👉 Tip #41: Profile your pandas DataFrame in one line of code

Let’s say that you’ve got a new dataset you want to quickly explore without too much work. Here’s what to do:

Step 1: Install ydata-profiling​

Step 2: Import ydata_profiling in Jupyter

Step 3: Run the ProfileReport() function and pass it any DataFrame

VoilĂ ! It returns an interactive report in HTML format.

The report’s first section is an overview of the dataset and a list of possible issues with the data:

The second section gives a summary of each column:

The third section lets you explore feature interactions:

The fourth section visualizes missing values:

And the final section shows a sample of the dataset:

Want more tricks like this? Check out My top 25 pandas tricks on YouTube (250K+ views), or enroll in my new course, pandas in 30 days!


đź‘‹ See you next Tuesday!

Did you like this week’s tip? Please forward it to a friend or share this link with your favorite online community. It really helps me out! 🙌

- Kevin

P.S. How This Guy Makes the World’s Best Puzzle Boxes (WIRED video)

Did someone AWESOME forward you this email? Sign up here to receive Data Science tips every week!

Learn Artificial Intelligence from Data School 🤖

Join 25,000+ intelligent readers and receive AI tips every Tuesday!

Read more from Learn Artificial Intelligence from Data School 🤖

Hi Reader, happy new year! 🎉 I wanted to share with you the three most important articles I found that look back at AI progress in 2025 and look forward at what is coming in 2026 and beyond. I’ve extracted the key points from each article, but if you have the time and interest, I’d encourage you to read the full articles! 💠 The Shape of AI: Jaggedness, Bottlenecks and Salients By Ethan Mollick “Jaggedness” describes the uneven abilities of AI: It’s superhuman in some areas and far below human...

Hi Reader, I just published a new YouTube video: How to use top AI models on a budget Description: Want to chat with the best AI models from OpenAI, Claude, and Google without paying $20/month? I'll show you how to use API keys with TypingMind to access top models for a fraction of the cost, demonstrate its killer feature of chatting with multiple models side-by-side, and explain when paying for a subscription is actually the smarter choice. Timestamps: 0:00 Introduction 0:37 Pay-per-token...

Hi Reader, On Friday, I announced my forthcoming book, Master Machine Learning with scikit-learn. In response, my Dad asked me: How does the subject of this book relate to Artificial Intelligence? In other words: What's the difference between AI and Machine Learning? Ponder that question for a minute, then keep reading to find out how I answered my Dad... 👇 AI vs Machine Learning Here's what I told my Dad: You can think of AI as a field dedicated to creating intelligent systems, and Machine...