Tuesday Tip #41: Profile your pandas DataFrame 🔎


Hi Reader,

I just published a new blog post, Get started with conda environments. If you’re new to virtual environments in Python, give it a read!

Once you start using virtual environments, you’ll wonder how you ever got along without them!


đź”— Link of the week

​Yann LeCun on the future of AI (Lex Fridman interview)

Yann LeCun is one of the “godfathers of Deep Learning”, the Chief AI Scientist at Meta, and (in my opinion) one of the clearest and most convincing thinkers on the future of AI.

It’s a long interview (2 hr 45 min), and some of the sections are highly technical, so use the timestamps to jump to the parts that interest you most.

Lex is a world-class interviewer and an AI researcher, and he was the perfect person to conduct this conversation. Highly recommended!


👉 Tip #41: Profile your pandas DataFrame in one line of code

Let’s say that you’ve got a new dataset you want to quickly explore without too much work. Here’s what to do:

Step 1: Install ydata-profiling​

Step 2: Import ydata_profiling in Jupyter

Step 3: Run the ProfileReport() function and pass it any DataFrame

VoilĂ ! It returns an interactive report in HTML format.

The report’s first section is an overview of the dataset and a list of possible issues with the data:

The second section gives a summary of each column:

The third section lets you explore feature interactions:

The fourth section visualizes missing values:

And the final section shows a sample of the dataset:

Want more tricks like this? Check out My top 25 pandas tricks on YouTube (250K+ views), or enroll in my new course, pandas in 30 days!


đź‘‹ See you next Tuesday!

Did you like this week’s tip? Please forward it to a friend or share this link with your favorite online community. It really helps me out! 🙌

- Kevin

P.S. How This Guy Makes the World’s Best Puzzle Boxes (WIRED video)

Did someone AWESOME forward you this email? Sign up here to receive Data Science tips every week!

Learn Artificial Intelligence from Data School 🤖

Join 25,000+ intelligent readers and receive AI tips every Tuesday!

Read more from Learn Artificial Intelligence from Data School 🤖

Hi Reader, This week, I've got a short tip about AI agents, followed by some Data School news... 👉 Tip #56: What are AI agents? Google is calling 2025 "the agentic era," DeepLearning.AI says "the agentic era is upon us," and NVIDIA's founder says "one of the most important things happening in the world of enterprise is agentic AI." Clearly AI agents are a big deal, but what exactly are they? Simply put, an AI agent is an application that uses a Large Language Model (LLM) to control its...

Hi Reader, Last week, I launched a brand new course: Build an AI chatbot with Python. 120+ people enrolled, and a few have already completed the course! 👏 Want to join us for $9? 👉 Tip #55: Should you still learn to code in 2025? You’ve probably heard that Large Language Models (LLMs) are excellent at writing code: They are competitive with the best human coders. They can create a full web application from a single prompt. LLM-powered tools like Cursor and Copilot can autocomplete or even...

Hi Reader, The Python 14-Day Challenge starts tomorrow! Hope to see you there 🤞 👉 Tuesday Tip: My top 5 sources for keeping up with AI I'll state the obvious: AI is moving incredibly FAST 💨 Here are the best sources I follow to keep up with the most important developments in Artificial Intelligence: The Neuron (daily newsletter) My top recommendation for a general audience. It’s fun, informative, and well-written. It includes links to the latest AI news and tools, but the real goldmine is...