Hi Reader,
In two weeks, I’ll be offering a Black Friday sale on ALL of my courses.
I’ll send you the details next week!
Easier data analysis with pandas (free)
This is my video series about pandas, the most popular Python library for data analysis. There are 30+ videos, most of which are designed for pandas beginners, though intermediate users can skip to the “bonus” videos at the bottom.
Normally I won’t link to my own tutorials in this section, but it seemed appropriate since the next few tips will be about pandas! 🐼
In last week’s tip, I showed you three visualizations that I created from the World Happiness Report data: a world map, a line chart, and an arrow chart.
I created those visualizations using Datawrapper, a no-code tool that I highly recommend checking out!
As is the case with many Data Science projects, I spent most of my time on the data cleaning step. Once the data was clean, Datawrapper made the visualization step quite easy!
In this week’s tip, I’m going to show you how I transformed the raw data into the world map data using pandas. Here are the specific steps I’ll demonstrate:
If you want to follow along with the code, you can run it online using Google Colab.
Here’s the end result:
The dataset is stored online in an Excel sheet, so I read it directly from the URL using the read_excel function. (Note that I split the URL string into two lines by adding parentheses around it.)
To avoid storing unnecessary data, I only kept the three columns that were relevant for the analysis. Life Ladder is the average “life evaluation” reported by residents, on a scale from 0 to 10, and is the report’s primary measure of happiness.
I renamed the columns so that they are lowercase, have no spaces, and are more descriptive. Not only does this create consistency, but it also allows me to use dot notation instead of bracket notation for column selection.
I also rounded the happiness column to 2 digits using the round method (since that’s enough precision for the purpose of this visualization), and I overwrote the existing happiness column with an assignment statement.
First, I used the unique method to display all of the country names in the dataset.
However, not all of the country names used by the World Happiness Report (WHR) are the same as the ones used by Datawrapper. For example, the WHR uses Congo (Brazzaville) and Congo (Kinshasa), whereas Datawrapper uses Congo and Democratic Republic of Congo.
Second, I created a dictionary to map the WHR names to the Datawrapper names.
Finally, I used the replace method to update the country names, overwrote the existing column, and used the unique method to check that the operation worked.
I filtered the DataFrame using a condition so that only the rows from 2022 remained.
I wrote the contents of the DataFrame to a file using the to_csv method, and excluded the index from the CSV since it’s not meaningful.
Once I uploaded the CSV into Datawrapper, it was easy to customize the map’s appearance and publish it online.
Again, here’s the end result, which you can click on and interact with:
If you enjoyed this week’s tip, please forward it to a friend! Takes only a few seconds, and it really helps me reach more people! 🙏
See you next Tuesday!
- Kevin
P.S. Ace your next job interview with zero knowledge
Did someone awesome forward you this email? Sign up here to receive Data Science tips every week!
Join 25,000+ intelligent readers and receive AI tips every Tuesday!
Hi Reader, Yesterday, I posted this announcement on LinkedIn and Bluesky and X: Kevin Markham @justmarkham Dream unlocked: I'm publishing my first book! 🎉🎉🎉 It's called "Master Machine Learning with scikit-learn: A Practical Guide to Building Better Models with Python" Download the first 3 chapters right now: 👉 https://dataschool.kit.com/mlbook 👈 Thanks for your support 🙏 1:47 PM • Sep 11, 2025 1 Retweets 5 Likes Read 1 replies This has been a dream of mine for many years, and I'm so excited...
Hi Reader, Hope you’ve had a nice summer! ☀️ As for me, I’ve been finishing my first ever book! I can’t wait to tell you about it and invite you to be part of the launch… stay tuned 👀 Today's email focuses on a single important topic: AI’s impact on your mental health 🧠 Read more below! 👇 Sponsored by: Morning Brew The 5-Minute Newsletter That Makes Business Make Sense Business news doesn't have to be dry. Morning Brew gives you the biggest stories in business, tech, and finance with quick...
Hi Reader, Most of us access Large Language Models (LLMs) through a web interface, like ChatGPT or Claude. It’s highly convenient, though there are two potential drawbacks: Cost: Some amount of usage is free, but heavy usage (or access to premium models) costs money. Privacy: Depending on the service, your chats may be used to train future models. (Or at the very least, your chats may be accessed if ordered by a court.) One solution is to run an LLM locally, which has gotten much easier with...