Tuesday Tip #20: Dictionary comprehensions in Python 📚


Hi Reader,

Tomorrow, I’m re-launching Python Essentials for Data Scientists to celebrate a HUGE course upgrade:

  • NEW: 22 additional video lessons
  • NEW: 7-part project to practice everything you’re learning

There will be a limited-time offer to celebrate the re-launch, so watch out for tomorrow’s email! 💸

I’ll be sending a few extra emails this week. I know your inbox is precious, so I’ll be giving you FREE access to 3 modules from the course! That way, you can benefit regardless of whether you choose to enroll. 💌

Thank YOU for being a valued reader! 🙏 Now let’s get to today’s tip…


👉 Tip #20: Use dictionary comprehensions in Python

Let’s say we had this list of words:

If we wanted to create a list of the word lengths, we could use a for loop:

We start with an empty list, and each time the loop runs, len(word) is appended to the list.

But as you might know, a list comprehension is even better for this scenario:

The effect is the same, but the code is much more concise.

Let’s now pretend that we wanted to create a dictionary containing both the word and its length. Once again, let’s use a for loop:

This time, we start with an empty dictionary, and each time the loop runs, a key-value pair is added to the dictionary.

You can actually convert this into a dictionary comprehension:

The structure is similar to a list comprehension, except there are curly braces { } instead of brackets [ ], and the first part of the comprehension (called the “expression”) is word:len(word) instead of just len(word).

You can read it as follows: “For each word, create a key-value pair of the word and its length.”

Visually, I really like the dictionary comprehension, since the “key:value” structure of the expression matches the way the dictionary prints out!

Let me know if you have any questions! đź’¬


Today’s tip is just one of the 22 NEW lessons from Python Essentials for Data Scientists!

If you want to build a solid foundation in Python and stay relevant in the world of AI, watch out for tomorrow’s email!

- Kevin

P.S. Weird Al Yankovic is human!​

Do you know someone who could benefit from learning Python? Please send them to pythoncourse.io so that they can hear about the launch! 🚀

Learn Artificial Intelligence from Data School 🤖

Join 25,000+ intelligent readers and receive AI tips every Tuesday!

Read more from Learn Artificial Intelligence from Data School 🤖

Hi Reader, Most of us access Large Language Models (LLMs) through a web interface, like ChatGPT or Claude. It’s highly convenient, though there are two potential drawbacks: Cost: Some amount of usage is free, but heavy usage (or access to premium models) costs money. Privacy: Depending on the service, your chats may be used to train future models. (Or at the very least, your chats may be accessed if ordered by a court.) One solution is to run an LLM locally, which has gotten much easier with...

Hi Reader, Here are your top AI stories for the week: AI-driven education in 2 hours per day Add yourself to an AI-generated TV show AI models send "subliminal messages" to one another Read more below! 👇 Sponsored by: Superhuman AI Find out why 1M+ professionals read Superhuman AI daily. AI won't take over the world. People who know how to use AI will. Here's how to stay ahead with AI: Sign up for Superhuman AI. The AI newsletter read by 1M+ pros. Master AI tools, tutorials, and news in just...

Hi Reader, In this week’s tip, I’ll be breaking down some highly practical advice for taking full advantage of the capabilities of today’s AI models. Check it out below! 👇 Today’s tip is based on Ethan Mollick’s excellent article, Using AI Right Now: A Quick Guide. I recommend reading the whole thing if you have time, but if not, I’ve pulled out some important quotes from the article and added my own commentary: For most people who want to use AI seriously, you should pick one of three...