Hi Reader,
Soon it will be winter break for my 6-year-old, so this is going to be my last Tuesday Tip of the year! ⛄
If you've ever taken one of my courses, you may have noticed that I frequently recommend the Anaconda distribution of Python.
You might be left wondering:
I'll answer those questions below! 👇
Anaconda is a Python distribution aimed at data scientists that includes 250+ packages (with easy access to 7,500+ additional packages). Its value proposition is that you can download it (for free) and "everything just works." It's available for Mac, Windows, and Linux.
A new Anaconda distribution is released a few times a year. Within each distribution, the versions of the included packages have all been tested to work together.
If you visit the installation page for many data science packages (such as pandas), they recommend Anaconda because it makes installation easy!
conda is an open source package and environment manager that comes with Anaconda.
As a package manager, you can use conda to install, update, and remove packages and their "dependencies" (the packages they depend upon):
As an environment manager, you can use conda to manage virtual environments:
conda has a few huge advantages over other tools:
Miniconda is a Python distribution that only includes Python, conda, their dependencies, and a few other useful packages.
Miniconda is a great choice if you prefer to only install the packages you need, and you're sufficiently familiar with conda. (Here's how to choose between Anaconda and Miniconda.)
Personally, I make extensive use of conda for creating environments and installing packages. And since I'm comfortable with conda, I much prefer Miniconda over Anaconda.
Would you be interested in taking a short course about conda? Reply and let me know! 💌
If you enjoyed this week’s tip, please forward it to a friend! Takes only a few seconds, and it really helps me reach more people!
I'll see you again in January! 👋
- Kevin
P.S. Christmas decorating injuries 🎄
Did someone awesome forward you this email? Sign up here to receive Data Science tips every week!
Join 25,000+ intelligent readers and receive AI tips every Tuesday!
Hi Reader, Last week, I encouraged you to experiment with different LLMs, since there’s no one model that is superior across all use cases. Specifically, I suggested you try using Chatbot Arena, which allows you to chat with multiple models at once. It’s completely free, but has two significant disadvantages: Your chats are not private and may be used for research. It lacks the feature-rich interface provided by other LLMs. Today, I want to offer you a better method for experimenting with...
Hi Reader, Over the past 50 tips, I’ve touched on many different topics: Python, Jupyter, pandas, ML, data visualization, and so on. Going forward, I’m planning to focus mostly on Artificial Intelligence. I’m announcing this so you know what to expect, and I know what to deliver! 💌 I’ll also try to make the tips shorter, so that they're easier to digest on-the-go. Finally, I plan to include an “action item” each week, so that you can practice what you’re learning. I hope you like these...
Hi Reader, Next week, I’ll be offering a Black Friday sale on ALL of my courses. I’ll send you the details this Thursday! 🚨 👉 Tip #50: What is a "method" in Python? In Python, a method is a function that can be used on an object because of the object's type. For example, if you create a Python list, the "append" method can be used on that list. All lists have an "append" method simply because they are lists: If you create a Python string, the "upper" method can be used on that string simply...