Hi Reader!
Welcome to the first issue of “Tuesday Tips,” a new series in which I’ll share a data science tip with you every Tuesday!
These tips will come from all over the data science spectrum: Machine Learning, Python, data analysis, NLP, Jupyter, and much more!
I hope they will help you to learn something new, work more efficiently, or just motivate and inspire you ✨
In supervised Machine Learning, “hyperparameter tuning” is the process of tuning your model to make it more effective. For example, if you’re trying to improve your model’s accuracy, you want to find the model parameters that maximize its accuracy score.
One common way to tune your model is through a “grid search”, which basically means that you define a set of parameters you want to try out, and your model evaluation procedure (like cross-validation) checks every combination of those parameters to see which one works the best.
Sounds great, right?
Well, one big problem with grid search is that if your model is slow to train or you have a lot of parameters you want to try, this process can take a LONG TIME.
So what’s the solution? I've got two solutions for you:
1. If you’re using GridSearchCV in scikit-learn, use the “n_jobs” parameter to turn on parallel processing. Set it to -1 to use all processors, though be careful about using that setting in a shared computing environment!
🔗 2-minute demo of parallel processing
2. Also in scikit-learn, swap out RandomizedSearchCV for GridSearchCV. Whereas grid search checks every combination of parameters, “randomized search” checks random combinations of parameters. You specify how many combinations you want to try (based on how much time you have available), and it often finds the “almost best” set of parameters in far less time than grid search!
🔗 5-minute demo of randomized search
How helpful was today’s tip?
If you enjoyed this issue, please forward it to a friend! 📬
See you next Tuesday!
- Kevin
P.S. Shout-out to my long-time pal, Ben Collins, who inspired and encouraged me to start this series. He has been sharing weekly Google Sheets tips for almost 5 years! Check out his site if you want to improve your Sheets skills!
Join 25,000+ intelligent readers and receive AI tips every Tuesday!
Hi Reader, Here are your top AI stories for the week: ChatGPT can weaken your brain Claude shares nerve gas recipe Amsterdam ends AI experiment due to bias Read more below! 👇 Sponsored by: Brain.fm Transform Your Focus With Brain.fm I know you're always on the hunt for tools that genuinely improve your life—which is why I'm excited to introduce you to Brain.fm's groundbreaking focus music. Brain.fm's patented audio technology was recently validated in a top neuroscience journal, showing how...
Hi Reader, Last week, I invited you to help me test Google's Data Science Agent in Colab, which promises to automate your data analysis. Does it live up to that promise? Let's find out! 👇 Sponsored by: Morning Brew Business news you’ll actually enjoy Join 4M+ professionals who start their day with Morning Brew—a free daily newsletter that makes business, tech, and finance news genuinely enjoyable to read and hard to forget. Each morning, it breaks down complex stories in plain English—cutting...
Hi Reader, Today I'm trying something brand new! I wrote short summaries of the 5 most important AI stories this week, and also turned it into a video: Watch the video I'd love to know what you think! 💬 AI-generated TV ad airs during NBA finals Prediction market Kalshi just aired this AI-generated ad on network TV during the NBA finals. It was created in just two days by one person using Google's new Veo 3 video model, plus scripting help from Google's Gemini chatbot. Expect to see many more...